Exclusive Central Hadron Production in pp Collisions at the Tevatron for √s = 1960GeV, 900GeV

Partial Wave Analysis - Full Status

M. Żurek, A. Święch Jagiellonian University, Kraków

D. Lontkovskyi, I. Makarenko University of Kyiv

M. Albrow, J.S. Wilson, J.Lewis FNAL

Contents

Physics Motivation

Data sample

Gap cuts

Exclusivity cuts

2 Exclusive tracks on primary vertex

- Additional cuts
- Acceptance calculation
- Systematic uncertainties
- Partial Wave Analysis

Physics Motivation Double Pomeron Exchange

Pomeron:

- Carrier of 4-momentum between protons
- Strongly interacting color singlet combination of quarks or/and gluons
- Quantum numbers of vacuum
- LO: P = gg

Analysis GXG reaction

$$\overline{p} + p \rightarrow \overline{p} + GAP + X + GAP + p$$

X (in this study):

- hadron pair mostly π^+ π^-
- central y ≈ 0
- between rapidity gaps Δy ≈ 4
- Q = S = 0, C = +1, J = 0 or 2, I=0

Expected to be dominated by DPE in the t-channel!

Low Mass Central Hadronic State Analysis Candidates selection

Trigger requirement:

- 2 central (|η|<1.3) towers with
 Et > 0.5 GeV
- PCAL (2.11<|η|<3.64) in veto
- CLC (3.75<|η|<4.75) in veto
- BSC1 (5.4<|η|<5.9) in veto

Gap cuts:

To determine noise levels in subdetectors we divide zero-bias sample from same periods into two sub-samples:

No Interaction:

- No tracks and
- No CLC hits and
- No muon stubs

Interaction:

At least one

- Track or
- CLC hit or
- Muon stub

Low Mass Central Hadronic State Analysis Candidates selection

Examples of exclusive requirements – empty forward detectors

Low Mass Central Hadronic State Analysis

Candidates selection

Exclusivity cuts

To determine exclusive 2-4 tracks we apply similar technique in central region, just excluding cones of R=0.3 around each track extrapolation.

$$R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$$

Effective exclusive luminosity

 Determination of efficiency of having nopileup using zero-bias sample.

We measure ratio of empty events (all detectors on noise level) to all events.

- Exponential drop with bunch luminosity.
- Slope corresponds to total detected inelastic cross section.

1960 GeV 900 GeV

53.88(36) mb 62.76(38) mb

1.18/pb 0.059/pb

Low Mass Central Hadronic State Analysis

Candidates selection

Additional cuts:

• quality of tracks ΔZ_0 , N of COT hits, χ^2/N_{dof} , p_T

cosmic ray rejection:
 no muons, 3D opening angle, d_o

• Physical cuts:

η, rapidity of central state, total charge

Examples: d_0 , y(X)

Cut	1960GeV	900GeV	
Triggered	92130 x 10 ³	21737 x 10 ³	
Forward cleanup	59276 x 10 ³	18749 x 10 ³	
2 tracks	4700 x 10 ³	271 × 10 ³	
Quality + cosmic rejection + exclusivity	415413	8400	
Opposite sign	350009	7595	
Luminosity	7.12/pb	0.074/pb	
Exclusive luminosity	1.18/pb	0.059/pb	

Acceptance calculation

Model independent analysis 3 components:

Kinematics cuts:

- $P_{r}(\pi) > 0.4 \text{ GeV/c}$
- $|\eta(\pi)| < 1.3$
- $|y(\pi)| < 1.0$

- Trigger efficiency
- Single track acceptance
- 2 tracks acceptance

- 1. Sample of min-bias data, good quality isolated (no other tracks in cone with R=0.4) tracks.
- 2. Checking how often they fired 0, 1, 2 or more trigger towers (>= 4 bits) in 3x3 box around track extrapolation.
- 3. Trigger efficiency composed from those 3 probability distributions (which are functions of P_1 and η)

Before: trigger efficiency only in the function of P_t

Probability of triggering 2 or more towers in the central detector by two independent tracks "a" and "b":

$$\varepsilon = P_2(a) + P_1(a) * [P_1(b) + P_2(b)] + P_0(a) * P_2(b)$$

- P₀ probability of triggering no towers
- P₁ probability of triggering one tower
- P, probability of triggering two or more towers

	P ₂ (b)	P ₁ (b)	P ₀ (b)
P ₂ (a)	X	X	X
P ₁ (a)	X	X	
P ₀ (a)	X		

Single track acceptance

- 1. Single pion generation, flat in phi
- 2. Acceptance in the function of Pt(track) and eta
- Probability that track will be reconstruced at all
- Probability that track will pass all single track quality cuts

Single track acceptance

2 tracks cuts acceptance

Cuts:

- 3D opening angle
- y of central state
- Separation
- dZ0

Based on J=0 phase space model
All previous cuts applied before

Systematical uncertainties

- 1. All cut parameters varied by
 - ~ 1 standard deviation (gaussian-like) or
 - ~ 0.5 of FWHM width (Lorentz like)
 - what looks resonably (others)
- 2. Trigger efficiency statistical uncertainties of probability distributions
- 3. Same value of cut for E-W forward detectors.
- 4. Assumed independence of such systematics.
- 5. Applied simultanously in data/MC

Pt distribution for different mass ranges

Mass distribution — tail fit

Question 1

Do we want to present all our spectra from 0.28GeV/c² in mass or from 0.8GeV/c²?

Partial Waves Analysis - Idea

Unpolarized coss-section

$$\frac{d\sigma}{d\Omega} = \frac{1}{(2s_a + 1)(2s_b + 1)p^2} \sum_{(\lambda),J,J'} \left(J + \frac{1}{2}\right) \left(J' + \frac{1}{2}\right) (-1)^{\lambda - \mu}
\cdot \langle \lambda_a \lambda_b | T_J(E) | \lambda_c \lambda_d \rangle * \langle \lambda_a \lambda_b | T_{J'}(E) | \lambda_c \lambda_d \rangle
\cdot \sum_I C(JJ'I; \lambda, -\lambda) C(JJ'I; \mu, -\mu) P_I(\cos \theta)$$

M.Jacob, G.C.Wick, On the general theory of collisions for particles with spin, Ann. Phys. 7, (1959) 404-428.

$$a+b \rightarrow c+d$$

- \triangleright s_a, s_b spins
- ightharpoonup J, J' total angular momenta
- $ightharpoonup \lambda_a$, λ_b , λ_c , λ_d helicities; $\mu = \lambda_c \lambda_d$, $\lambda = \lambda_a \lambda_b$
- ▶ p momentum of initial state particle, E c.m. energy
- ▶ T = i(1 S), S scattering matrix
- ▶ $C(JJ'I; \lambda, -\lambda)$ C-G coefficients

Double Pomeron Exchange

Goal:
$$\langle \lambda_a \lambda_b | T_J(E) | \lambda_c \lambda_d \rangle = ?$$

DPE properties:

- \blacktriangleright $\pi^+\pi^-$ production only via *s*-channel diagrams
- $ightharpoonup 0^{++}$, 2^{++} , 4^{++} , \cdots intermediate states only
 - ightarrow each such state has a definite J
 - ightarrow 0⁺⁺ states contribute only to T_0
- lacksquare $s_\pi=$ 0, $s_\mathbb{P}=$ 0, $\lambda_\pi,\,\lambda_\mathbb{P}=$ 0
- ▶ Therefore: $\langle \lambda_a \lambda_b | T_J(E) | \lambda_c \lambda_d \rangle$ is a single complex number $\mathbf{R}_J(\mathbf{E}) \mathbf{e}^{\mathbf{i}\phi_J(\mathbf{E})}$

Tool: Measurement of coefficients of Legendre polynomials a_l

0^{++} and 2^{++} central state assumption

- ► $J, J' = 0.2 \rightarrow I = 0.2.4$
- ► Only non-zero C-G coefficients: *C*(000; 00), *C*(022; 00), *C*(220; 00), *C*(222; 00), *C*(224; 00)
- 1. $I = 4 \rightarrow \text{only } J = J' = 2$: $a_4 = \left(\frac{9}{7}\right)^2 p^{-2} R_2^2$
- 2. $I = 0 \rightarrow J = J' = 2 \text{ or } J = J' = 0$: $a_0 = \frac{1}{4}p^{-2}(R_0^2 + R_2^2)$
- 3. $I=2 \rightarrow J=J'=2$ or J=0, J'=2 or J=2, J'=0: $a_2=p^{-2}\left(\frac{5}{2}R_0R_2\cos(\phi_2-\phi_0)+\left(\frac{5}{7}\right)^2R_2^2\right)$, where: $\delta=\phi_2-\phi_0$ relative phase

Finally:

1.
$$R_2^2 = p^2 \left(\frac{7}{9}\right)^2 a_4$$

2.
$$R_0^2 = \rho^2 \left(4a_0 - \left(\frac{7}{9} \right)^2 a_4 \right)$$

3.
$$\delta = \frac{1}{2} \frac{a_2 - \left(\frac{5}{9}\right)^2 a_4}{\sqrt{\left(\frac{7}{9}\right)^2 a_4 \left(4a_0 - \left(\frac{7}{9}\right)^2 a_4\right)}}$$

Legendre moments - correction for acceptance

Corrected Legendre moments **b** (vector):

$$\mathbf{b} = \mathbf{K}^{-1} \mathbf{a}$$
.

a - not corrected Legendre moments, K following matrix:

$$K_{ll'} = \frac{\sum_{i} w_i P_l(\cos \theta_i) P_{l'}(\cos \theta_i)}{\sum_{i} w_i},$$

where: $w_i = w_i^{MC} \cdot w_i^{Acc}$.

 $http://www-cdf.fnal.gov/\ jsw/internal/GXG/PWA-corrections.md.html$

1. Statisical uncertainties:

$$cov(b_l, b_{l'}) = K_{ll'}^{-1} cov(a_l, a_{l'}) \left(K_{ll'}^{-1}\right)^T$$

We need the covariance of the mean value of the sample.

$$cov(a_l, a_{l'}) = \frac{\sum_{ij} w_i w_j cov(P_l(\cos \theta_i), P_{l'}(\cos \theta_j))}{\sum_{ij} w_i w_j}$$
$$= \frac{\sum_i w_i^2}{\sum_{ij} w_i w_j} cov(P_l(\cos \theta), P_{l'}(\cos \theta))$$

Let us denote: $V_1 = \sum_i w_i$, $V_2 = \sum_i w_i^2$, then:

$$cov(a_{l}, a_{l'}) = \frac{V_{2}}{V_{1}^{2}} \frac{V_{1}}{V_{1}^{2} - V_{2}} \sum_{i} w_{i} (P_{l}(\cos \theta_{i}) - a_{l}) (P_{l'}(\cos \theta_{i}) - a_{l'})$$

$$= \frac{V_{2}}{V_{1}^{2} - V_{2}} \left(\frac{\sum_{i} w_{i} P_{l} P_{l'}}{V_{1}} - a_{l} a_{l'} \right) = \frac{V_{2}}{V_{1}^{2} - V_{2}} \left(\langle P_{l} P_{l'} \rangle - a_{l} a_{l'} \right)$$

Legendre moments - correction for acceptance

2. Uncertainties linked with \mathbf{K}^{-1} matrix: related to statistics of our MC sample

M. Lefebvre, R.K. Keeler, R. Sobie, J. White, Propagation of Errors for Matrix Inversion, [arXiv:hep-ex/9909031] Let us denote: $\epsilon_{Im} = \langle P_I P_m \rangle$:

$$cov(\epsilon_{ab}^{-1}, \epsilon_{cd}^{-1}) = \sum_{ijkl} \epsilon_{ai}^{-1} \epsilon_{jb}^{-1} \epsilon_{ck}^{-1} \epsilon_{ld}^{-1} cov(\epsilon_{ij}, \epsilon_{kl}),$$

thus:

$$\delta b_i^2 = \sum_{jk} a_j cov(\epsilon_{ab}^{-1}, \epsilon_{cd}^{-1}) a_k$$

 $cov(\epsilon_{ab}^{-1}, \epsilon_{cd}^{-1})$ - calculated in analogous way as in 1.

3. Systematical uncertainties: We varied all parameters (in Data and MC) and checked the result in Legendre moments plots.

MC – no weighting

MC – no weighting

MC – no weighting

Data – no MC weighting

Data – no MC weighting

Data – no MC weighting

MC – weighting

MC – weighting

MC – weighting

Data – MC weighting

Data – MC weighting

Data – MC weighting

Conclusions

- We have measured $\pi^+\pi^-$ pairs between large rapidity gaps at the Tevatron, which should be dominated by double pomeron exchange. The background from K⁺K⁻ is small.
- We do not see a $\rho(770)$, confirming that photoproduction and ρ -exchange, are negligible.
- This is the only measurement from the Tevatron, and has much higher statistics than preliminary data from the LHC experiments.
- The mass spectra show several structures:
 - Broad continuum below 1 GeV/c²,
 - Sharp drop at 1 GeV/c²
 - Resonant enhancement around 1.0 1.5 GeV/c².
- The s-dependence is mass dependent.
- We plan to do a partial wave analysis to distinguish different spin states.

Thank you

Backup slides

Data sample

- Datasets used:
 - gdifap 1960 GeV
 - gdifar 900/300 GeV
- Same trigger requirement: DIFF_TWO_CJET0.5_PLUGVETO_0.75
 - 2 central ($|\eta|$ <1.32) towers with Et > 0.5 GeV
 - Plug (2.11<| η |<3.64) in veto (Et <0.75 GeV)
 - BSC1 and CLC in veto
 - L=7.12/pb 1960 GeV and L=0.074/pb 900 GeV
 - Gaps at least from |η|=1.3 to |η|=5.9

Effective exclusive luminosity

Efficiency of having no-pileup using zero-bias sample. We measure ratio of empty events (all detectors on noise level) to all events.

Should drop exponentially with bunch luminosity and be equal 1 at L=0

Slope corresponds to part of inelastic cross section with particles in |eta| < 5.9. (More low mass diffraction is included at 900 GeV than at 1960 GeV.):

- 53.88(36) mb 1960 GeV
- 62.76(38) mb 900 GeV
- Effective luminosities:
 - 1.18/pb 1960 GeV
 - 0.059/pb 900 GeV

Systematics - summary

Cut	1960 GeV	900 GeV
Exclusivity cut in CD	15%	15%
Forward Plug	6%	6%
Pt	2%	2%
Z0	2%	4%
BSC	2%	4%
Luminosity	6%	6%
χ^2	3%	3%
Total:	20%	20%